If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2+11z+3=0
a = 6; b = 11; c = +3;
Δ = b2-4ac
Δ = 112-4·6·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-7}{2*6}=\frac{-18}{12} =-1+1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+7}{2*6}=\frac{-4}{12} =-1/3 $
| 5x-20=x-4=x+5 | | 18-3r=6 | | w+2/6=5/4 | | 8x-5=13x+5 | | 8r²-30r-50=0 | | -3+2f=-5 | | A=5a+2a | | 2x+6+12=180 | | -7(u+68)=-98 | | 3x+3/9=2x+2/6 | | (3y-5)*7=7+7y | | 163.84=26.3y-y^2 | | ((2(x-3))*4)2x=0 | | 7x2x/3=5 | | y/2-4=-1 | | 3x+5+2x=180= | | 1=d/2-2 | | p/4+-17=-15 | | 5m-6.25=48.75 | | 2(-41/2+m)+3=4(m-3)=51/2 | | (2(x-3))/2=(1/4)2(x+3) | | -q+19=3 | | x/2-4=8-5x | | 5/11x+3/5=3/4-6/11x+3/4 | | 8.5-a=5 | | 9s-7=8+3s | | (2(x-3))/2=(1/4) | | -9+2r=-3 | | 1+1x=13-3x | | 6+5x=5x-6 | | -3x-3=-3x+8 | | -14p-5(3-4p)=2(p-3)-9 |